Solutions 3

Exercise 3.19

According to (3.43) in example 3.15 of Page 59, we can get

$$
\operatorname{var}(\hat{\beta}) \geq \frac{12}{(2 \pi)^{2} M \eta \frac{M+1}{M-1}\left(\frac{L}{\lambda}\right)^{2} \sin ^{2} \beta}
$$

where $\eta=1 L=(M-1) \lambda / 2$ and $\beta=90^{\circ}$. Thus,

$$
\operatorname{var}(\hat{\beta}) \geq \frac{48}{(2 \pi)^{2} M\left(M^{2}-1\right)}
$$

Since $\sqrt{\operatorname{var}(\hat{\beta})}=5 \pi / 180$, we can obtain

$$
M\left(M^{2}-1\right) \geq 159.7 \Longrightarrow M \geq 6
$$

However, in this case, $L=(M-1) \lambda / 2=(M-1) c /\left(2 F_{0}\right)=750 \mathrm{~m}$ where $F_{0}=10^{6}$. It is obviously impossible.

Exercise 3.20

Using (3.16) in Page 37 and 38, we can get

$$
\operatorname{var}\left(\hat{P}_{x x}(f)\right) \geq \frac{\left(\frac{\partial P_{x x}(f)}{\partial a[1]}\right)^{2}}{I(a[1])}=\frac{\left(\partial P_{x x}(f) / \partial a[1]\right)^{2}}{N /\left(1-a^{2}[1]\right)}
$$

According to example 3.16, we have $P_{x x}(f)=\frac{\sigma_{u}^{2}}{|A(f)|^{2}}$ where $A(f)=1+a[1] e^{-j 2 \pi f}$. Thus,

$$
\begin{aligned}
\frac{\partial P_{x x}(f)}{\partial a[1]} & =\sigma_{u}^{2} \cdot \frac{\partial}{\partial a[1]}\left(\frac{1}{A(f) A^{*}(f)}\right) \\
& =-\frac{2 \sigma_{u}^{2}}{|A(f)|^{4}}(a[1]+\cos 2 \pi f)
\end{aligned}
$$

Then,

$$
\operatorname{var}\left(\hat{P}_{x x}(f)\right) \geq \frac{4 \sigma_{u}^{2}\left(1-a^{2}[1]\right)(a[1]+\cos 2 \pi f)^{2}}{N|A(f)|^{8}}
$$

For the given value, we can get

$$
\operatorname{var}\left(\hat{P}_{x x}(f)\right) \geq \frac{0.0076(-0.9+\cos 2 \pi f)^{2}}{\left|1-0.9 e^{-j 2 \pi f}\right|^{8}}
$$

Figure 1: CRLB versus frequency

The variance is highest when $f=0$ because of the sensitivity of the PSD to direct change in $a[1]$ for f near zero.

Exercise 5.3

$$
\begin{aligned}
p(\mathbf{x} ; \lambda) & =\prod_{n=0}^{N-1} \lambda \exp (-\lambda x[n]) \quad x[n]>0 \\
& =\lambda^{N} \exp \left(-\lambda \sum_{n=0}^{N-1} x[n]\right) \cdot u(\min x[n])
\end{aligned}
$$

Thus, $T(\mathbf{x})=\sum_{n=0}^{N-1} x[n]$ is a sufficient statistic.

Exercise 5.4

$$
\begin{aligned}
p(\mathbf{x} ; \lambda) & =\prod_{n=0}^{N-1} \frac{1}{\sqrt{2 \pi \theta}} e^{-\frac{1}{2 \theta}(x[n]-\theta)^{2}} \\
& =\frac{1}{(2 \pi \theta)^{N / 2}} e^{-\frac{1}{2 \theta} \sum_{n=0}^{N-1}(x[n]-\theta)^{2}} \\
& =\frac{1}{(2 \pi \theta)^{N / 2}} e^{-\frac{1}{2 \theta} \sum_{n=0}^{N-1} x^{2}[n]-\frac{1}{2} N \theta} \cdot e^{\sum_{n=0}^{N-1} x[n]}
\end{aligned}
$$

Thus, $T(\mathbf{x})=\sum_{n=0}^{N-1} x^{2}[n]$ is a sufficient statistic.
Exercise 5.5

$$
\begin{gathered}
p(x[n] ; \theta)=\frac{1}{2 \theta}(u(x[n]+\theta)-u(x[n]-\theta)) \\
p(\mathbf{x} ; \theta)=\frac{1}{(2 \theta)^{N}} \prod_{n=0}^{N-1}(u(x[n]+\theta)-u(x[n]-\theta))
\end{gathered}
$$

The product is zero unless $-\theta \leq x[n] \leq \theta$ for all $x[n]$ or $\max |x[n]| \leq \theta$, so that

$$
p(\mathbf{x} ; \theta)=\frac{1}{(2 \theta)^{N}} u(\theta-\max |x[n]|)
$$

Thus, $T(\mathbf{x})=\max |x[n]|$ is a sufficient statistic.

Exercise 5.14

(a)

$$
p(x ; \mu)=\exp \left[\mu x-\frac{1}{2} x^{2}+\left(-\frac{1}{2} \mu^{2}+\ln \frac{1}{\sqrt{2 \pi}}\right)\right]
$$

where $A(\mu)=\mu, B(x)=x, C(x)=-\frac{1}{2} x^{2}$ and $D(\mu)=-\frac{1}{2} \mu^{2}+\ln \frac{1}{\sqrt{2 \pi}}$.
(b)

$$
\begin{aligned}
p\left(x ; \sigma^{2}\right) & =\frac{x}{\sigma^{2}} \exp \left[-\frac{1}{2} \frac{x^{2}}{\sigma^{2}}\right] u(x) \\
& =\exp \left[-\frac{1}{2} \frac{x^{2}}{\sigma^{2}}+\ln x u(x)-\ln \sigma^{2}\right]
\end{aligned}
$$

where $A\left(\sigma^{2}\right) B(x)=-\frac{1}{2} \frac{x^{2}}{\sigma^{2}}, C(x)=\ln x u(x)$ and $D\left(\sigma^{2}\right)=-\ln \sigma^{2}$.
(c)

$$
p(x ; \lambda)=\exp [-\lambda x+\ln u(x)+\ln \lambda]
$$

where $A(\lambda) B(x)=-\lambda x, C(x)=\ln u(x)$ and $D(\lambda)=\ln \lambda$.

Exercise 5.15

$$
\begin{aligned}
p(\mathbf{x}, \theta) & =\prod_{n=0}^{N-1} \exp [A(\theta) B(x[n])+C(x[n])+D(\theta)] \\
& =\exp \left[A(\theta) \sum_{n} B(x[n])+\sum_{n} C(x[n])+N D(\theta)\right] \\
& =\exp \left[A(\theta) \sum_{n} B(x[n])+N D(\theta)\right] \exp \left[\sum_{n} C(x[n])\right]
\end{aligned}
$$

Thus, $T(x)=\sum_{n=0}^{N-1} B(x[n])$ is a sufficient statistic.
For (a), $T(x)=\sum_{n} x[n]$, for (b), $T(x)=\sum_{n} x^{2}[n]$ and for (c), $T(x)=\sum_{n} x[n]$.
For Gaussian, the MVU is $\hat{\mu}=\frac{1}{N} T(x)=\frac{1}{N} \sum_{n} x[n]$.
For Rayleigh, we have $\mathbb{E}\left(x^{2}\right)=2 \sigma^{2}$. Thus, $\hat{\sigma^{2}}=\frac{1}{2 N} \sum_{n} x^{2}[n]$.
For exponential, we have $\mathbb{E}(x)=\frac{1}{\lambda}$. Denote $\nu=\frac{1}{\lambda}$, then $\hat{\nu}=\frac{1}{N} \sum_{n} x[n]$.

